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Abstract

Productivity is a key factor for the growth of production outcomes and the development of
industries. While data and methodologies are demanding, many insightful conclusions can be
derived from cross sectional estimations, especially with micro data. This paper does a literature
review of the most important methodologies for the estimation of cross-sectional productivity and
the proper treatment of granular data in such estimations. Taking advantage of a rich dataset of
agricultural production at farm level, the paper shows a practical example of the methodologies
exposed and recommended data treatment. Although the results shows common directions on
the productivity estimations, we conclude that the assumptions underlying each methodology will
determine the context in which the estimations would have a better fit.

JEL clasification: O47, D24, Q12.
Keywords: Productivity, Cross-sectional data, Production unit level analysis.

1 Introduction

Total factor productivity (TFP) is understood as the non input related part of the output in a produc-
tion process. Since Solow (1957) classic paper, productivity has been considered a main determinant
of growth because it captures the technology, ways in which some resources are transformed into a
new product, and efficiency, ways in which this process develops, involved in an economic activity.
When fixing input levels, any change in the output can only be explained by differences in methods,
knowledge and processes used in the transformation process, making the TFP a residual measurement
that can be effectively compared between production units.

Although we could think of many determinants of this factor, TFP is the sum of widely different
elements, making it difficult to conceptualize or to put in a comprehensive scale. Furthermore, to
properly identify it, one must correctly characterize the relationship between the output and the in-
puts. The econometric and conceptual requirements of this estimation are thus heavily reliant on the
data available to approach this problem.

In this paper, we discuss the methodologies that can be implemented to estimate total factor pro-
ductivity in settings where only cross-sectional data is available. This methodologies are then applied
to a rich dataset of 654 coffee producers households in Colombia, that includes information on total
agricultural output, type of labor and capital used in production, land usage and a wide variety of farm
and household characteristics. A main advantage of this dataset is that the level of disaggregation
allows to have a detailed definition of factors relations. Yet, this tools can also be applied to aggregated
data, giving this methodology review a wide scope.

The paper is structured as follows. First, the methodologies for TFP estimation are described, start-
ing with frontier estimations, followed by indexes and concluding with production function estimations.
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Following the methodology part, common data treatment practices and potential methodological prob-
lems will be described. Finally, a practical application of each methodology is estimated and discussed.

2 Frontier Estimations

The notion of productivity as the value of output relative to a potential production comes as far as
Farrell(1957), under the idea of the existence of an optimal upper bound level of production. This
production limit, or frontier, can be used as benchmark to compare the performance of different pro-
duction units if it is assumed that technology and methods are homogeneous for all the producers.
This implies that in frontier methodologies, differences in productivity arise from different practices
and ways of using the existing technology (technical efficiency), which are expressed as distances from
the frontier.

2.1 DEA

Data envelopment analysis (DEA) is a frontier estimation technique based on the assumption of a local
linear production frontier. For a vector n in the neighborhood of the input set Xn, the production
frontier takes the form

µ′qn = α+ υ′xn (1)

Where qn is output, xn is input, µ′ and υ′ are non negative values and α captures the returns to
scale of the production (O’Donell, 2010). The DEA analysis can be oriented to both input or output,
depending where the frontier is projected, which gives flexibility to analyze cost minimization or profit
maximization production models. Furthermore, productivity is calculated by comparing radial expan-
sions of factors relative to the frontier, the biggest radial expansion possible.

Based on the frontier definition, radial expansions can be measured by distance functions that take
the following form when input oriented

Dt
I(xn, qn) =

υ′xn

µ′qn − α
(2)

and the following when output oriented

Dt
O(xn, qn) =

η′qn
Φ′xn + β

(3)

Where η, Φ and β are the analog of υ, µ and α respectively for the output oriented frontier, and
are represented this way to state the difference of parameters depending on the orientation. Linear
optimization is used to calculate unknown parameters (α, µ, υ or η, Φ,β) by solving a linear problem
(maximization of µ′qn − α when input oriented or minimization of Φ′xn + β when output oriented)
subject to Dt

I(xn, qn) > 1 when input oriented and Dt
O(xn, qn) < 1 when output oriented (O’Donell,

2010). To simplify the optimization process and identify local solutions, is common the normalization
of υ′xn = 1(conversely η′qn=1 when output oriented), or the assumption of a theoretical value to α
(like α = 0 to exhibit constant returns to scale, for example)(O’Donell, 2010).
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While not assuming a functional form and not needing prices, as qi and xi are in quantities, are big
advantages, the methodology has some limitations. DEA is sensitive to parameters estimation, that
will oscillate depending on the distribution of inefficiencies in the sample (Simar,1999). In addition,
when qi and/or xi are matrix (multiple inputs and/or outputs), DEA estimates weights that can dis-
tort distance function if the overall composition of inputs or outputs in the data are not representative
to the real distribution (Şişman,2017). One way of dealing with the latter problem is through Boot-
strapping. This method allows to do estimations through sampling with replacements from empirical
distribution of weights, allowing a more robust distance function estimation (Tziogkidis, 2012). Al-
though Bootstrapping might help with weight bias, DEA cannot differentiate inefficiencies from data
noise or imperfections (Hu, 2020), making it an important limitation of this methodology.

2.2 Stochastic frontier analysis (SFA)

Stochastic frontier analysis, originally proposed in Aigner, Lovell, and Schmidt (1977), builds over the
same frontier notion as DEA but adds an extra element: stochastic shocks. The idea is that, for a
given frontier, productions units suffers from inefficiencies that reduces output from it’s potential, but
there are also many unexpected and transitory factors that, while not being related to efficiency, can
affect the outcome of the production process. The SFA model can be stated as follows

yi = m(xi;β)− ui + vi (4)

Where m(xi;β) is the frontier of firm i, yi is the output in log terms, ui is the inefficiency term
and vi is the stochastic shock (Kumbhakar, 2020). Defining the frontier as m(xi;β) implies that this
estimation gives a parametric functional form to the relation between output and inputs, which usually
take the form of log linear Cobb-Douglas or Translog production function. This formulation clearly
states that SFA is a generalization of functional forms, as they all include an error term, vi in this
case, but suppose that ui = 0, leaving to the researcher the possibility of testing the assumption of
full efficiency, present in functional form, with SFA (Kumbhakar, 2020), this by simply checking if ui

is statistically different from zero.

Consequently, most of the assumptions of functional forms are extended to the inefficiency term,
that is, the independence of ui and vi and the orthogonality of vi and ui with production inputs.
However, as ui is a negative term for production, E[vi − ui|x] ̸= 0 (Kumbhakar, 2020). OLS could
be used to estimate SFA if equation (4) is rewritten by adding and subtracting expected inefficiency,
changing the intercept of m(xi;β) and implying that E[vi − (ui − E[u])|x] = 0, but it would only be
useful to capture mean inefficiency adjusted technology, not a central issue in productivity analysis
(Kumbhakar, 2020). Therefore, Maximum Likelihood estimation is an useful alternative to estimate
SFA, requiring to impose distributions to vi, normal distribution with mean 0 and variance σ2

v , and ui,
usually assumed a half normal distribution N+(0, σ

2
u) or exponential with parameter σu, and allowing

to estimate both inefficiency and factor elasticity (Kumbhakar, 2020).

To estimate productivity in SFA, unknown parameters (β,σu and σ2
v) must be estimated. One pos-

sible way of measuring productivity can be trough technical efficiency, that is the relative effectiveness
in using inputs. This can be estimated by solving equation (4) for the inefficiency therm ui with the
estimated parameters of MLE as follows

TE = E[e−ui ] = E[Yi/e
m(xi;β̂)evi ] (5)

with E[e−ui ] ∈ [0, 1] (Kumbhakar, 2020). The inefficiency therm on its own, ui, is also an inter-
esting indicator that could be used to compare production units, as inefficiency inversely determines
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productivity. This parameter, while not fully observable, can be estimated for the given density func-
tion and parameter obtained in MLE as

E[ui|ϵi] = µ∗i +
σ∗ϕ(

µ∗i
σ∗

)

Φ(µ∗i
σ∗

)

Where ϕ(.) is a standard normal probability density function and Φ(.) is a standard normal cu-
mulative distribution function (Kumbhakar, 2020)1.

3 Non parametric indexes

One way of approaching the relation between input and outputs is through indexes. We can think
of the TFP as the change in the ratio to which a given amount of inputs can be transform into a
given amount of output, as the changes of such value would show the part of output growth that is
not explained by input growth (O´Donnell,2010). Productivity indexes are flexible estimations in the
sense that they do not assume a functional form for the production process, like DEA. Accordingly to
this methodology, TFP of observation n at time t is defined as

TFPnt =
Qnt

Xnt
(6)

Where Qnt and Xnt are non decreasing, non negative and monotonic functions that aggregate
multiple inputs and outputs respectively(O´Donnell, 2010). Whenever we cannot account for growth
gaps, like in cross-sectional data, a good approach are Non-Parametric indexes.

3.1 Färe-Primont

The Färe-Primont index is a Non-parametric estimation based on aggregated quantities function. This
linear and non-decreasing functions allow to define a relation between factors that can delimit a fron-
tier of possible production levels, simply by supposing that technology is given for a moment of time
and that all producers have access to such technology (O’Donnell, 2011). Once defined a general fron-
tier, each production unit outcome can be evaluated by its relative distance to the possibilities frontier.

Equation (6) can be rewritten as an index of the TFP of unit i relative to unit h

TFPh,i =
Do(xo, yi)

Do(xo, yh)

DI(xh, yo)

DI(xi, yo)
(7)

Where DO(.) DI(.) are Shephard distance functions (Homogeneous and non decreasing) of out-
put and input respectively (O’Donnell, 2011)2. These functions measure the inverse largest radial
contraction (expansion) of an input (output) that is technically feasible (Chambers, Chung & Färe,
1998).This index has two key characteristics that makes it the most suitable of indexes for assessing
cross sectional productivity. First, it is transitive, which means that observations of production units

1And ϵ = vi − ui, µ∗i =
−ϵσ2

u
σ2 , σ2

∗ =
σ2
uσ2

v
σ2 .

2Shephard input and output distance functions are defined as

DI(y, x) = sup{λ > 0 : (x/λ, y) ∈ T} ; DO(x, y) = sup{θ > 0 : (x, y/θ) ∈ T}

Where T = {(x,y)} and is closed, convex, (0,0)∈T and assumes no free lunch(Chambers, Chung & Färe, 1998). The
term λ ultimately captures the returns to scale of the production.
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through time are not needed to compare each other, they all can be compared to the frontier in each
moment of time. Second, it is multiplicative complete, which means that it can be decomposed into
technical, efficiency and scale changes (O’Donnell, 2011). From equation (7), TFP efficiency (TFPE)
can be estimated if unit i is compared to the most productive observation in the dataset (equivalent
to the maximum TFP estimated, denoted as TFP ∗).

TFPEi =
TFPi

TFP ∗ (8)

Finally, TFPE is decomposed into technical, scale efficiency and scale changes and thus solving for
TFPi would give the following output oriented TFP definition

TFPi = TFP ∗ ∗OTEi ∗OSEi ∗RMEi (9)

OTE is the output oriented technical efficiency. OTE captures the difference between TFPi and
TFP ∗ that it is possible while holding the same varieties of input and output and the input level fixed
(Molinos-Senante,Maziotis, & Sala-Garrido, 2016). OTE can be written as follows, where Q̄i is the
maximum aggregate output possible when using input level and mix to produce a scalar multiple of
the output level of unit i (Hu, Liung & Peng, 2020)

OTEi =
Qi

Q̄i

OSE is the output oriented scale efficiency. OSE captures the difference between TFPi at a tech-
nically efficient point and TFP ∗ that is possible while holding the same varieties of input and output
(Molinos-Senante,Maziotis, & Sala-Garrido, 2016). OSE can be written as follows, where Q̄i is the same
as in OTE and X̃ and Q̃ are output and input levels at the technically efficient point (O’Donnell, 2010)

OSEi =
Q̄i/Xi

Q̃i/X̃i

RME is the residual mix efficiency. RME captures difference between TFPi at a point on frontier
for given combinations of input and output and TFP ∗ when input and output combinations and levels
can vary (Molinos-Senante,Maziotis, & Sala-Garrido, 2016). RME can be written as follows, where X̃
and Q̃ are the maximum output and input levels for the given combinations and Q∗

i /X
∗
i is equal to

TFP ∗(O’Donnell, 2010)

RMEi =
Q̃i/X̃i

Q∗
i /X

∗
i

As production units are usually heterogeneous in key characteristics, size for example, is reason-
able to think that frontiers should be estimated taking into account such differences. Färe-Primont
indexes usually estimate frontiers within subsets of more comparable observations in the data sets
in order to have estimations consistent with observable characteristics and thus, more precise TFP
estimations(Orea & Kumbhakar, 2004). While this enables a more precise results, it also can come as
a drawback as estimations would be reliant on the subsets defined by the researcher.

5



3.2 Cost based shares

As it was explained in section 2.2, functional form methodologies assume no technical inefficiency,
and thus productivity estimations only requires factor elasticity in order to solve for the TFP term,
commonly referred as Ai. As proposed by Hall (1990), when producers are price-takers in factors
markets (perfect competition), firms maximize profits, there is perfect information and constant return
to scale are assumed, factor share of input j in a group of m inputs can be estimated as follows

β̂j =
PjXj∑m
i=1 PiXi

Where Pjand Pi is the market price of input j and i respectively and Xj and Xi are the quantities
used in production of the same pair. Under those assumptions, the elasticity of output with respect to
each input is equal to its share in total cost. Here, no assumption over competition in output market
needs to be done, only in inputs markets (Hall, 1990). Once factor shares are estimated, TFP of
observation i can be defined as

TFPi = eyi−β̂xi (10)

Where xi is a matrix with all the j inputs involved in the production process and yi is the out-
put, both in log form. While this estimation is non parametric, in the sense that factor shares are
estimated without structure or theoretical constrain, it does suppose a linear relation between output
and input in order to define the TFP. This estimation is a bridge between non parametric estimations
and structural functional forms, and, because of the linearity assumption, the result can be compared
more accurately to the later group of estimations.

4 Production functions

One of the most popular methodologies for estimating productivity is using structural production
functions that theoretically explain how outputs relate to inputs, also known as primal techniques
(Jimenez, Abbott & Foster, 2019). Once a given form is assumed, econometric models are used in
order to estimate the elasticity of factor substitution, that can be interpreted as cost shares under the
same conditions exposed by Hall (1990). Technology in production functions is usually represented as
Hicks Neutral (factors are affected equally), following the same notion of technology as everything that
is not explained by choices of producers, now making explicit its neutrality to all the possible inputs.
Hicks Neutral technology also implies that TFP is estimated by subtracting the theoretical expected
output from the observed output, both in log form. Finally, when constant returns to scale are fixed,
functional forms assume no technical inefficiencies, implying that differences in productivity only come
from differences in the technology frontier.

4.1 Cobb-Douglas function

Cobb-Douglas function is a classic functional form that has been widely used in economic literature.
It generally takes the following form

Yi = AiL
α
i K

β
i (11)
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Where Yi,Li and Ki are the levels of the output, labor and capital of observation i respectively.
Production inputs are perfectly substitutes and essential to production. While these factors are ob-
served, productivity (Ai) is an unknown parameter for the econometrician. Furthermore, this residual
could be capturing measurement errors, noise in the data or observable/unobservable shocks that do
not necessarily relate to the productivity term. Taking logarithms and solving for A would be as follows

yi = β0 + αli + βki + εi + ηi (12)

ln(Ai) = β0 + εi

With β0 as the mean TFP in the sample and εi the deviations of each observation from the mean
(Van Beveren, 2010). ηi can be interpreted as any unobserved shocks that deviate the estimation
of yi and are not related to productivity, thus can be assumed i.i.d (Van Beveren, 2010). Although
separating Ai in this way allows to clean the effect of noise and/or measurement errors, the deviations
captured by εi are still problematic. As part of these shocks can be observed to the producer, factor
levels can be determined based on such conjectures, arising endogeneity in the OLS estimation of
shares (De Loecker, 2007). Furthermore, if there is a static component in εi that producers already
known, any change in such variables would also cause endogeneity, as producers react to phenomenons
they perceive. Whether if it as a shock or a known characteristic, the problem of εi comes from the
fact that producers reacts to variables that the econometrician might not be aware of. Assuming that
εi is fixed and known, factor elasticity could be estimated by OLS if we control by the observable that
explain εi, and thus TFP would be estimated as

Ai = eyi−α̂li−β̂ki (13)

4.2 Translogaritmic production function

The translogaritmical (translog) function is a flexible production aproximation that can be understood
in three possible ways: 1) As a production function of its own, 2) As a second order Taylor series ap-
proximation to a general unknown function, or 3) a second order approximation to a CES function
(Boisvert,1982).The translog function relax the usual assumption of constant elasticity of substitution
and allows non linear relations with the output and between factors. A function with n inputs can be
written as follows (when taking natural logarithms in both sides)

log Y = logA+

n∑
j=1

αj log xj +
1

2

n∑
i=1

n∑
j=1

βij log xi log xj (14)

Equation (14) shows that translog function, when assumed as a function of its own, is a general-
ization of Cobb-Douglas, as the latter suppose βij = 0 (assuming that the interactions of factors or its
quadratic therms are not related with the output). When the Cobb-Douglas form is rejected (βij ̸= 0)
further assumptions must be tested, convexity and monotonicity more specifically, as translog func-
tions may not be well behaved (Boisvert,1982). Added to these issues, the same limitations from the
Cobb-Douglas functions arise as both are estimated by OLS. Like in the previous functional form (and
under the same assumptions), A is equal to the total factor productivity, that solving equation (13)
would define TFP as
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logA = log Y −
n∑

i=1

α̂i log xi −
1

2

n∑
i=1

n∑
j=1

β̂ij log xi log xj (15)

Having multiple elements per factor within the regression makes the translog function more sus-
ceptible to having collineality than Cobb-Douglas (Boisvert,1982). Therefore, it is key to check if
the defined inputs are colliear. One last common practice with this function is testing for different
definitions of inputs, separating or aggregating them based on theoretical concepts, as the flexibility
of the function allows to have a broader understanding of the way factors relate to each other. This is
specially useful with micro data, that usually have inputs defined in desegregated units.

5 Production functions limitations and solutions

The problems that εi brings in functional form estimations are not minor. Biased factor elasticity
estimations implies that TFP cannot be estimated as it would not allow the functional form to prop-
erly capture the relation between inputs and outputs. Most literature developed to control this issue
(Levinsohn and Petrin, 2003) and (Olley and Pakes,1996) is based on panel data. However, for cross-
sectional data, there are still some solutions.

5.1 Fixed Effects

As implied in section 4.1, if the endogenous part of TFP, εi, is known and measurable, fixed effects
can properly control the endogeneity issue in the OLS estimation (Pavcnik, 2002). This could solve
the problem when the endogeneity is caused by production unit fixed characteristics that determine
the levels of output. Once accounted those therms, it could be assumed that the levels of inputs
are independent from the productivity term, implying that observable shocks to the producers are
assumed to be equal to zero (Van Beveren, 2010). In this way, TFP would be the output part that
is not explained by inputs nor firm level characteristics. While being effective for controlling by ob-
servable characteristics that don’t change over time, the assumption of no observable shocks is strong
(Van Beveren, 2010), making fixed effects a good methodology when there is diversity in observable
characteristics and good reasons to assume constant shocks for all the producers.

5.2 IV

One of the most popular approaches is Instrumental Variables. If the researcher manage to find a set
of variables that can explain total output only through the endogenous variables (Production factors),
and this variables are not correlated to the unobserved shocks, the factor shares of each input could be
effectively estimated. IV relaxes the assumption of exogeneity of inputs from productivity (Wooldridge,
2009), allowing to capture production functions where producers choose their factors based on their
productivity. However, it also implies that TFP is exogenous to the producers, ruling out the existence
of investment in productivity, like R&D (Van Beveren, 2010).

In theory, and when assuming perfect competition in input and output markets, factor’s prices are
a potentially good instrument as they relate to production only through the endogenous factors and
are a key determinant in the optimal choice of such inputs(satisfy exclusion and relevance), (Ackerberg
et. al, 2007). However, disaggregated data on prices are hard to find, and differences in prices could
also be capturing differences in the quality of the good. Other possible instruments are weather or
external shocks, as they imply changes in both supply and/or demand, but this type of data is even
harder to find(Van Beveren, 2010).
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Although the assumptions are not too demanding, IV has not been widely used in literature pre-
cisely because of the difficulties of finding suitable instruments.

5.3 OLS correction

Another way of solving this problem is correcting OLS as proposed by Winsten (1957), that follows
the same notion of SFA estimation, just that, instead of estimating with Maximum Likelihood, OLS
is cleaned from the stochastic error term. Under the same settings of SFA, the intercept is shifted to
ensure that residuals are negative (shifting production in order to make it a frontier to every observa-
tion) and technical inefficiency is denoted as the difference between the maximum error to each of the
estimated errors. Hence, the corrected OLS frontier would be as follows

ln(ŷi) = β̂0
cols

+ β̂1xi1 + ...+ β̂nxin − ε̂i
cols (16)

Where:

β̂0
cols

= β̂0 +max
i

{ε̂i} , i = 1, ..., n

TI = ϵ̂i
cols = max

i
(ε̂i)− ε̂i, i = 1, ..., n

This is exactly the same process of SFA estimation with OLS that was exposed back in section
2.2. As also previously noted, this estimates mean inefficiency adjusted technology, cleaned from both
external shocks and individual deviations that might cause endogeneity (ϵi) (Sickles ,2019). Once tech-
nology is adjusted from average inefficiency and endogeneity is not an issue, productivity differences
are captured by individual technical inefficiency deviations from the average in the sample, that can
be estimated by taking the difference of total output with respect to the frontier (ŷi) as

TEi = 1− ln(ŷi)− ln(yi)

Intuitively, the OLS correction and SFA are fairly similar measurements of technical efficiency,
and, ultimately, the only relevant difference is the methodology to estimate input elasticity, a factor
that may determine which methodology to follow depending on the strengths or limitations of OLS or
Maximum Likelihood in the dataset.

6 Summary of methodology review

On previous sections, we have discussed the methodologies available to estimate productivity with
cross sectional data. While we have encompassed the main features and theoretical intuitions of each
methodology, they have been widely developed in literature and, if the reader is interested in imple-
menting one of these methodologies, we recommend further reading of the cited authors and documents
in this paper.

To summarise the methodologies reviewed in the paper and to give the reader a quick guide to check
in which situations is auspicious to apply each methodology, this section presents a table containing

9



key information and a recommendation on practical situations in which each methodology should be
applied.

Methodology Assumptions Limitations Practical situation

DEA

- Local linear frontier.
- Returns to scale (if
needed)
- Firms follow
cost minimization or
profit maximization
process.

- Sensitive to data noise.
- Representative weights
of inputs or outputs is
needed if dataset is not
large enough.
- Sensitive to inefficiency
distribution in data.

Useful when there is no price
data and/or no functional form
is known or assumed.

SFA

- Independence of ui

and vi.
- Orthogonality of vi
and ui with Xi.
- Assumptions of the
chosen functional
form (taken as the
general frontier).
- Distribution function
of vi and ui.

- Can only estimate Technical
Efficiency from an assumed
distribution.
- Due to ML estimation, can be
biased in small samples and is
sensitive to starting points.

Useful to complement functional
form analysis, as it allows to test
assumptions and give alternative
estimations under fairly similar
settings.

Färe-Primont

- Homogeneous
Technology.
- Firms follow
cost minimization or
profit maximization
process.

- Sensitive to data noise.
- Representative weights of
inputs or outputs is needed
if dataset is not large
enough.
- Sensitive to assumptions
over homogeneity of
observations.

Useful when no functional form
is known or assumed and/or a
decomposed measurement of
TFP is needed.

Cost based
shares

- Perfect competition.
-Firms maximize
profits.
-Perfect information.
-Constant return
to scale.

- Very strong and unusual
assumptions

Useful only when assumptions
hold

Cobb-Douglas

- εi is fixed
and known.
-Orthogonality of ηi
with production
inputs.
-No technical
inefficiency.

- Requires a lot of data in
order to assure that
assumptions hold.

Useful in most cases, even
when no functional form is
known. It is the standard
methodology in literature.

Translog

- εi is fixed
and known.
-Orthogonality of ηi
with production
inputs.
- Low collineality
between inputs.
-No technical
inefficiency.

- Requires a lot of data in
order to assure that
assumptions hold.
- Convexity or monotonicity
might not hold, even if the
rest of assumptions do.

Useful in most situations,
specially when input data is
abundant and multiple
specifications are possible.

Table 1: Methodology review

10



7 Data treatment

Once the researcher defines which estimation, and assumptions, suits better, the data must be trans-
formed into the needed variables in order to properly estimate productivity, a process that is specially
sensitive in production functions.

Although production functions where initially formulated as physical relation of inputs and outputs
(Cobb & Douglas (1928)), this type of data is hard to find and thus functions are usually estimated
with monetary value of inputs and outputs. As Felipe et al (2021) expose, estimations with each type
of data may incur in different issues. When using physical quantities factors would capture the real
technology elasticity and the endogeneity issue would be the main problem to deal with, apart from
finding the data (Felipe et al, 2021). On the other hand, estimations with monetary values, when
defining output as added value, would capture the accounting identity (added value equals output
minus intermediate inputs), implying that the estimated elasticity would be the factor shares of such
identity and that TFP would be the weighted average of wage and profit rates rater than the true
productivity residual (Felipe et al ,2021).

The criticism to production function estimations comes back to the late 60’s, having renowned
economist, like Samuelson (1979), on its side, but have generally been overlooked by literature. It is
important to understand the relevance of the critiques to production estimations in order to measure
TFP. While it all comes down to the availability of data, proper definitions of variables is key to come
across this theoretical limitations. When available, quantity data should be used to define inputs and
outputs. If only prices value are available, output must be defined as total output value instead of
added value, and input prices should be, ideally, firm level prices to avoid omitted price bias (Van
Beveren, 2010).

7.1 Defining Output

The final product of the production process is conceived as the output. For simple production process,
output is a singular well defined product, but, in practice, many industries produce more than one
product. Multi-product production lines must be treated specially to avoid biased TFP estimations.
Ideally, if data allows it, the mix of output types and levels are necessary to estimate a complete
production function of each production units (Van Beveren, 2010). If data is not available to that
level, firms could be aggregated by type of output or parameters could be estimated allowing vari-
ation within production units to account differences in the composition of output (Bernard et al, 2009).

Whether is singular or multiple, output have two common ways of being defined when no quan-
tity data is available: As gross output value or as Added value. Although literature tends to use
added value extensively, usually in production situations in which intermediate inputs are produced
in the same industry, the previous discussion on prices and physical units have made clear the issues
with added value, besides having the extra assumption that added value is separable from interme-
diate production, and thus the former can be obtain by the subtraction of the latter to the total output.

7.2 Defining Inputs

Production inputs are defined as the factors utilized in the creation of a commodity. While there can
be significant differences in production inputs across industries, labor and capital tend to be present
in almost all of them. It is crucial to have a good understanding of the roles of factors in production to
properly define inputs. Separability tests are good practices for understanding factors relation when
there is no clarity in the definitions or there are multiple types of inputs in the same category (different
types of machines, for example). The test is based on the idea that the marginal rate of substitution
would be independent between separable inputs (factors that can be defined independently), thus, a
given partition implies separability when factors behave independently, that can be checked proving
the following statement
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fjfij − fifji = 0

where fi and fj are the marginal products of partitions i and j, both part of a total set of possible
inputs, and fij and fji are the cross partial derivatives of i with respect to j and j with respect to i
(Boisvert, 1982).

Inputs can be essential or non essential. While some production units can have output without
having some type of inputs, it is unlikely they produce something if they do not have essential inputs.
Including non essential inputs can be problematic in production function methodologies as factors are
transformed with logarithms and the absence of the factor in one observation wouldn’t allow to do
estimations. Researchers usually add a constant value to all the observation to avoid this problem,
but as Soloaga (2017) shows, different constant values can imply different estimations.

The proper way of including non essential factors, Soloaga argues, is estimating an optimal con-
stant value trough Maximum likelihood. If parameters and the constant values are estimated, the
result would be the values that maximizes the probability of observing the data for a given distribu-
tion, not just elasticity, but also the given minimum level of each non essential input in the production
(Soloaga, 2017).

Factors quality vary across producers. It is a good practice to account for those divergences when
possible. A very common input with this type of variance across observations is land, a common
factor in agricultural production. As Restuccia et al proposes (2017), one can regress total output over
land characteristics in order to construct a land index quality to finally be included in the production
functions as total land times the index. Taking into account the depreciation is also key in production
inputs like capital. Overall, if data is available, it is desirable to control over observable to assure the
comparability between production units and, ultimately, productivity estimations.

7.3 Summary of Data treatment

To summarize the previous discussion and to give the reader a quick guide to check how to define
factors for given datasets, table 2 presents information about input and output definitions depending
on data availability and a recommendation on methodologies to use for each type of data. The table
is focused on functional form definitions as it is the most demanding of all the methodologies and it
assumes that previous steps mentioned, like production composition, separability test, and quality and
depreciation data, are previously included.
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Data
available

Input and output
definition

Ideal for

Quantities

- Output: Total
quantities produced(Kg or units)
- Essential inputs: Total
quantities used(Kg or units,
control for quality and
depreciation if data
is available)
- Non essential inputs:
Total quantities used (Kg
or units, optimal constant
value needed in
functional forms, control for
quality and depreciation if data
is available)

- Functional forms
- DEA
- Färe-Primont
- SFA
- Cost based shares

Prices
(Ideally
firm
level)

- Output: Total value of
production (Constant prices)
- Essential inputs: Total
cost of input (Constant
prices)
-Non essentila inputs:
cost of input (constant
prices optimal constant value
needed in functional
forms, control for quality and
depreciation if data is available)

- Functional forms
- SFA

Table 2: Data treatment

8 Practical application

To apply the previous methodologies, a rich dataset of coffee production is used. The data is a cross-
Sectional survey on 654 coffee farms and 2240 individuals in Huila and Tolima, Colombia, realized
on August of 2021 with help of Federacion Nacinal de Cafeteros (FNC) and Alianza EFI. At house-
hold level, the survey contains information on agricultural production, labor usage (desegregated by
household and hired labor), capital usage and types of capital tenure, cultivated land, constructions,
fertilizers usage and technical assistance. At individual level, the survey contains basic personal in-
formation(age, education, etc), labor (sector, income, months worked) and financial inclusion data.
Other external datasets for prices (SIPSA) and weather and soil quality are used to complement the
survey data.

Coffee is a permanent and main crop in these regions, making it the principal agriculture output of
the interviewed farms, determining labor usage, capital investments and even side crops, cultivated in
order to protect coffee plant. The homogeneity in production facilitates the comparability of factors
and output across the sample and this orientation towards coffee makes it easier to refine estimations
as capital and output measurements and characteristics are specific to this crop.

Output was defined as total agricultural output value. This allows to capture heterogeneity on side
crops productions, that was mainly plantain and avocado, and to capture differences in coffee quality,
as some farms in the sample produced certified coffee that implies differences in cultivation practices.
Multiple definitions of output where used to check robustness, mainly coffee output in physical quan-
tities and coffee output value, and results where fairly similar. For the inputs, labor was defined as
total hours employed, land as total hectares cultivated and capital as total value of machines. labor
was disaggregated in hours of hired labor, both in permanent and temporal crops, and family labor,
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in the same categories. Multiple definitions of labor where tested, but separability test showed that
proper definition was the aggregation all the units of labor. For capital, there are 10 different types of
machinery specialized in coffee production and treatment, initially, each of the ten types of machines
where included as individual quantity inputs, taking into account depreciation, but testing for separa-
bility showed that elasticity were not statistically different, implying that capital should be defined as
a single input. To deal with the heterogeneity in the types of machinery, they where aggregated by firm
level price. Land was defined as total hectares cultivated times a land quality index, as proposed by
Restuccia et al (2017), that simply account for relative fit of the land for agricultural activity compared
to the overall quality of land in the sample. More precisely, the index was constructed with data on
coffee production aptitude, nutrient availability, Nutrient retention capacity, Workability, atmospheric
pressure, sun radiation and average precipitation. To control over observable characteristics, fixed
effects for municipality, farm size and type of coffee (certified or not) where included.

From the total dataset, observations with atypical values in key characteristics, like land and total
coffee production, where eliminated. The robustness of the sample allowed us to do the previous exer-
cise by simply defining atypical values as outliers from the sample distribution. Observations without
essential inputs (land, labor and capital) or without output (as some producers did not have a harvest
in the time covered by the survey) where also eliminated in order to have a set of highly comparable
observations, as differences in essential inputs imply severe differences in technology. Finally, when
crossing with complementary dataset in order to account for soil characteristics and some fixed effects
for functional forms, some observations had missing values and thus where not used in functional
form analysis. Hence, observations used in DEA and Färe-Primont methodologies where 540, while
functional form estimations used 536 observations.

In order to give the reader further information into the type of data that was used in the practical
application, table 3 shows a summary statistic of the main determinant production factor and output
of the dataset. Labor is hours worked, land is hectares cultivated, capital is the value in current
Colombian pesos, and coffee is on the standard measurement of production, bags, consisting of 125 Kg
of the product.

Table 3. Summary statistics
Mean SD Min Max

Labor (Hrs) 7317 11671.5 24 134400
Land (Hect) 6.0474 7.653582 0.0001 96.9000

Capital (COP) 17412371 18889176 36615 163347787
Coffee (125kg) 28.009 44.52433 0.010 450.000

9 Results

9.1 Technical efficiency (TE)

The first part of the productivity analysis will encompass methodologies that assume no technological
difference (or change), that is DEA, SFA, OLS correction (COLS) and Färe-Primont methodologies.
As constant returns to scale assumptions are specially strong in agricultural context (all production
units operate at optimal scale (Huguenin, 2012)), DEA estimations assumed variable returns to scale
and were estimated as output oriented. For methodologies that assume functional forms(SFA and OLS
correction), Cobb-Douglas production function was assumed. Table 4 shows the results of technical
efficiency estimations.

14



Table 4.Technical efficiency estimations
N Mean SD Min Max

DEA 540 0.1296449 0.1601701 0.0001543 1.0000000
DEA bootstrap 540 0.1089157 0.1291437 0.0001259 0.8584920
OLS correction 536 0.5987 0.1824248 0.3641 1.1132

SFA 536 0.2792563 0.2056839 0.0000054 0.8458131
Färe Primont 540 0.6440326 0.3478945 0.0006377 1.0000000

Färe Primont(multiple frontiers) 540 0.752223 0.3277569 0.000845 1.0000000

Overall, Technical efficiency is dramatically low in the data set. Mean TE in the five methodologies
is 0.41, which means that, on average, production units produce 59% less than what is feasible with
their inputs. DEA, both simple and bootstrap version, estimate the lowest average technical efficiency.
Figure 1 presents the estimated DEA linear frontier.

Figure 1: DEA frontier

Production unit labeled as 283 is the most productive in the dataset, as it is in the frontier (is
technical efficient) and, compared to other technical efficient units, like 405, has a greater slope, which
means that the transformation rate of inputs x into output y is bigger. Apart from the two observa-
tions in the frontier and a few others close enough, and, conversely, highly inefficient observations in
the down right side of the graph, most of the production units are located in the down left corner,
in a zone with low input to output relation and significantly far from the frontier. When estimat-
ing DEA with bootstrap, results are fairly similar. Average TE goes from 0.129 to 0.108, implying
that original weights of inputs underestimates potential production. Furthermore, maximum technical
efficiency in the sample with bootstrap falls to 0.85, this due to the fact that, when allowing to re
sampling weights, multiple frontiers are estimated and distance to such frontiers must vary given the
composition of inputs of each observation, showing the sensibility of frontier estimation to the relative
participation of inputs. Both DEA estimations shows a pervasive low technical efficiency in the sample.

For the functional form based estimations, results are relatively similar. While both estimate higher
technical efficiencies, average values are still far from the frontier. COLS estimates a higher level of TE
in the sample, with an average of 0.598, and has a significantly higher minimum value than both DEA
and SFA. As COLS frontier construction relies on factors and errors distribution, the methodology will
be heavily sensitive to extreme values, which, in the presence of such low input to output relationships,
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will skew production frontier down and estimate relatively higher technical efficiencies. Intuitively, as
COLS is a correction of stochastic shocks on the mean, potential frontier estimations will rely on the
observed efficiencies rather than the true potential of the overall production structure, overestimating
TE in low efficient observation and even allowing observations to be over the frontier, that is why
COLS is the only methodology with a maximum value beyond 1.

SFA, in the other hand, shows result more in line with DEA approach. Although average TE is
significantly higher (0.27), maximum and minimum values are fairly similar to bootstrap DEA. Due to
ML estimation, SFA is able to capture more robust estimations of TE and stochastic shocks compared
to COLS. Moreover, the similarity of extreme values of TE with DEA, while clearly coming from the
same assumption of linearity in frontier, also show that the assumed distributions appears to be in line
with DEA. Under Cobb-Douglas functional form, SFA estimates robust TE values compared to both
DEA and COLS, as assumptions are in line with DEA and COLS but doesn’t suffer from the problems
of the latter, as it properly estimates errors and factor shares. SFA results allow us to conclude that,
when properly estimating production frontier and cleaning error therms from stochastic shocks, tech-
nical efficiency in the data set is low and, while no production unit is technical efficient, the average
one in the sample produces about a third of what is feasible.

Finally, Färe Primont has the highest TE estimations in the sample. This methodology, like COLS,
is heavily sensitive to the sample distribution of errors, as OTE is the ratio between maximum output
to the observed one with the same input quantities, and thus, if most observations are concentrated
in one side of the frontier (as figure 1 shows) the frontier estimations will be downward skewed. While
highly productive observations might help OTE index to get closer to the real frontier, they are rare in
the dataset and thus will only help observations with the same levels of inputs to get closer to the real
TE values, but the majority will be compared to other unproductive observations. When estimating
multiple frontiers, aggregating observations by size in order to have more comparable observations,
technical efficiency estimations goes even higher. Again, as input quantities are the main determinant,
a re distribution of observations based on size can only estimate more precise TE if expected bias
come from multiple highly productive observations that should not be compared to structural different
production units, like ones with different size. But if low TE is pervasive in the sample, beyond size
categorization, this methodology is not efficient.

This six methodologies, while having significant variance on their estimations, show that Technical
efficiency is very low in the dataset and, regardless of size, production units are far below their feasible
levels of output.

9.2 Index decomposition

In order to fully explore Färe Primont flexibility of decoupling productivity into multiple indicators,
in this section we will take a look to the remaining indicators apart from the already analized output
oriented technical efficiency (OTE). Table 5 shows the results of scale efficiency, residual mean effi-
ciency and TFP efficiency for estimations with single and multiple frontier.

Table 5. Färe-Primont decompositions
Single forntier Multiple frontier

Mean SD Min Max Mean SD Min Max
OSE 0.87444 0.2001869 0.03361 1.00000 0.87083 0.222404 0.03361 1.00000
RME 0.215266 0.1343041 0.002072 1.00000 0.230506 0.1498153 0.003083 1.00000
TFPE 0.120942 0.132622 0.000056 1.00000 0.1421874 0.1394588 0.0000958 1.00000

The output oriented scale efficiency (OSE) is on average 0.87, which means that total factor produc-
tivity difference caused by the composition of inputs explains less than 0.13 percentage on the mean.
As labor and land is assume identical, the only difference in composition of inputs comes from capital,
which have 10 different categories, implying that production units in the dataset are mostly efficient
when choosing capital for production. It could also be interpreted that capital affects productivity the
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same in all of its ten categories, however, the roles of this factors are sharply different, as there are
labor augmenting capital inputs, transportation capital and heavy machinery for production within
this 10 categories, and it would not be intuitive to think so. If multiple capital categories are assumed
to affect productivity the same way, both interpretations could be correct.

Residual mean efficiency (RME) complements OSE and OTE results by showing that the composi-
tion of inputs are not determinants of productivity and thus, within the same groups of input classes,
production units produce 0.79 times less than what is feasible. It is no surprise that this number is
very close to the TE estimations of SFA and DEA methodologies, as the latter assume fixed classes of
inputs and compare output result to such fixed definitions. This point is key to understand that OTE
differences analysed in the previous section are also explained by the fact that this measurement do
allow more flexible definitions of inputs and that, once accounted the differences within homogeneous
input classes, the remaining differences of output throughout the compositions is not that determinant
of the overall productivity and mainly shows differences in production structures, if this categories can
be assumed as such.

Lastly, total factor productivity efficiency (TFPE) shows the skewed distribution of productivity
in the sample as it captures the ratio between most productive unit and the observed one. With mean
of 0.12, TFPE shows that average production units output is 0.88 less than the most productive obser-
vation. Furthermore, standard deviation shows that most observation are still far from most efficient
observation, in line with DEA implications. This is the only case where multiple frontier might be
helpful as both OSE and RME would not intuitively change within size groups, but TFPE might not
be fully comparable between production units with different scales. The results of TFPE with two
frontiers, where one group includes observations with land cultivated below or equal to the median
and the other the upper side of such distribution, shows that, effectively, a single frontier appears to
underestimates efficiency, but the difference in estimations is not statistically significant.

To finish the Färe Primont section, the TFP estimations will be analyzed, that is, as it was exposed
in section 3.1, the multiplications of previous factors with no weighing. Table 6 shows the result for
single and multiple frontier estimations

Table 6.Färe Primont TFP estimations
Mean SD Min Max

Färe Primont(single frontier) 0.0692268 0.07591214 0.0000321 0.5723947
Färe Primont(multiple frontiers) 0.1200852 0.1177633 0.0000813 0.8486428

Average values for both methodologies are, once again, strikingly low for both methodologies.
While estimating with multiple frontiers shows significantly higher results, both estimations imply
extremely low levels of productivity in the sample, with low maximum and average values. Recalling
the composition of this measurement, low TFP values imply that the interaction of such components,
when multiplied by the highest TFP, TFP ∗, is quite low. While OTE and OSE are relatively high,
Residual Mean Efficiency (RME) appears to be the determinant component of the low levels of TFP.

9.3 Factor elasticity

This section will analyse the results of functional forms factor elasticity estimated for land, labor and
capital. Table 7 shows the estimated elasticity of inputs for the principal functional forms, Cobb-
Douglas and Translog function. Both methodologies outcomes are the OLS results with fixed effects
(controlling by municipality, farm size and type of coffee).This methodology was chosen to fix the
OLS estimations due to the abundance of data available on observable characteristics and the fact
that all of the observations where geographically on the same region of the country, allowing the
assumption of constant shocks to be feasible. IV correction was tested as well, but we where unable
to find proper instruments, mainly because the proposed ones didn’t satisfy relevance in the first stage.
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While multiple definitions where tested, for both labor and capital, separability test showed that
the proper partition of such factors where the simple aggregation of the multiple categories into one.
This was unexpected, specially in the case of capital, as multiple categories had quite different roles
in production. As the discussion in section 9.2 hinted, the results of OSE are compatible with the
separability test results and we can assume that the relation between output and capital categories is
the same.

Table 7. Functional forms factor elasticity
Labor Capital Land

Method βw SE βk SE βl SE
Cobb-Douglas 0.133947∗ [0.058680] 0.306084∗ [0.126803] 0.563561∗∗∗ [ 0.123998]
Translog 0.1261383∗ [0.05402999] 0.3103539∗∗∗ [0.0647618] 0.5437222∗∗∗ [0.05704137]

Both Cobb-Douglas and Translog function show very similar factor elasticity estimation for the
three inputs, the only difference is the statistical significance of capital, that is higher in Translog
function due to lower levels of standard errors. The previous result is explained by the fact that
translog function do not reject the Cobb-Douglas form (βij are not statistically different from zero)
and thus rejects any non linear relation between inputs and output. Further analysis on Translog
functional form validates the assumptions of Cobb-Douglas. Test for monotoniciy and convexity hold,
meaning that translog function is well behaved. When analysing the relation between factors, partial
elasticity of substitution show that capital, land, and labor are substitutes between themselves, once
more, validating the Cobb-Douglas functional form as the appropriated one for this production set-
tings. Consequently, most of the following analysis will be carried out with Cobb-Douglas results.

Land is the most determinant factor in production, explaining more than a half (0.56%) of total
input elasticity, followed by capital with 30% and labor with 13%. As figure 2 shows, returns to scale
are barley above 1, implying that constant returns to scale might be assumed in functional form esti-
mations. While DEA and Färe Primont methodologies assumed variable returns to scale to allow more
flexible estimations, factor elasticity estimated in functional forms precisely shows the assumption of
this methodology, that is, production units operate at optimal scale and thus augmenting all inputs
in the same scale will have an effect of the same scale in output, ruling out the existence of technical
efficiency.

This might sound counter intuitive to the reader, as previous section showed high levels of technical
inefficiency. Recall that TE estimated with SFA or COLS take the Cobb-Douglas form as the general
upper bound of production and inefficiency as the non stochastic side of production that retains inputs
to be transform efficiently, while TFP estimations with functional form assume Cobb-Douglas as an
input and output relation that is affected by the non stochastic side of production, the TFP term
Ai. Ultimately, both methodologies try to capture the production side that is not explained by inputs
nor the error therm with different concepts but with the same functional form. While the notion of
an upper bound for production is an attractive way to understand productivity, it cannot capture
elements of know how and expertise that allow the same scale of inputs to be transformed into a
greater level of output, something that TFP do. While in some cases a frontier can be a precise way
of comparing production units, like in highly automatized production lines, TFP is more flexible for
capturing human heterogeneity involved in production, a key element in agriculture.

One last remark is that the clear importance of land in the set of inputs shows the need for DEA
and Färe Primont, and methodologies estimated with distance functions in general, to estimate robust
aggregation weights in order to capture this relative heterogeneity within inputs. While the results
in both methodologies are different, the use of distance function require proper weightings of factors
to account for the relative importance of production, and thus both estimations will be biased if no
proper weight definition is done.
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Figure 2: Factor shares

To close this section, cost based shares results are reported. Factor elasticity are somehow similar
to the ones in Cobb-Douglas and, by construction, constant returns to scale are attained. While it
was clear from section 3.2 that assumptions for this methodology are extremely demanding and do not
apply in the context of agricultural production, specially the perfect information assumption, another
problem was found. Namely, producers report significantly lower values of cost of usage of land than
the ones that could be expected in this settings. Adding this problem of undervaluation of land costs
makes the results broadly inconclusive, showing the sensibility of this methodology to data quality and
assumptions.

9.4 Total factor productivity in functional forms

The TFP estimations of functional form are displayed in table 8. Again, due to the no rejection of the
Cobb-Douglas function, TFP estimation of both methodologies are fairly similar. Mean TFP estimated
with Cobb-Douglas is 10.14279, this could be interpreted as: average producers transform their given
set of inputs into 10 time the output it would without any skill, know how, expertise and any other
differential technology that producer brings into production. Extreme values are also very illustrative
of the notion of productivity in TFP. The minimum value in the sample (0.00017) closely resembles
the notion of technical inefficiency, as this ”Productivity” negatively affects output and the production
unit would be better off by not applying this practices, or inefficiencies. Once again, TFP is a more
flexible notion of productivity that can also capture inefficiencies. Maximum values, as in previous
methodologies, show the overall low productivity in the sample as some observations are able to pro-
duce up to 205 times for their level of inputs with their technology while the average produce around 10.
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In this methodology the notion of relative productivity might be fuzzier than in previous defini-
tions. For example, two observation with the same TFP level can have completely different methods,
knowledge and technology and, yet, the effect of this elements in production is the same. Conversely,
there can be a constant element that explains TFP for all the observations with values greater than 1,
and the rest of difference might be due to divergences over the same idea or technology. This examples
illustrate the weakness of TFP as a productivity measurement, the flexibility turns into a downfall for
the interpretation and applicability of the term.

Table 8. TFP estimations in functional forms
Method N Mean SD Min Max

Cobb - Douglas 536 10.14279 24.64682 0.00017 205.24523
Translog 536 14.95783 36.9897 0.00026 302.50141

When analyzing the dispersion in productivity, very similar results are found in functional forms.
Throughout farm sizes, most observations are concentrated around low values of TFP, while some
smaller group observations have significantly high levels of productivity. A key determinant in this
behaviour is the type of coffee produced, as the premium price pay for certified coffee multiplies out-
comes. This certifications usually imply special treatment in the production process that do not need
different types of labor, capital or land, just need different practices with the product. Most of the
outliers in figure 3 are precisely farms with such practices.

Figure 3: Cobb-Douglas TFP distribution
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To compare scales differences present in technical efficiencies, TFP results were tested within size
groups of production units. Figure 3 shows that medium and large size farms are significantly more
productive than the small ones, with an average TFP value of around 18 while average small farm
is barely above 6. While medium and large farm size TFP results are not statistically different, it
appears that size and productivity are positively correlated.

When comparing this findings with TE, size do play an important role for TFP. This implies that
production units with different size produce with different technology, but as Färe-Primont decompo-
sition showed, scales appears to be irrelevant for technical efficiency and TFP. By the way TE and
TFP are estimated in Färe-Primont, results do not compare relative productivity between scale size
but relative productivity within the same scale, as size defined the frontier. This can be the main
reason why functional forms do captures differences in scale as opposed to Färe-Primont.

10 Conclusions

Although the basic assumptions of each methodology are quite different, TFP estimations points to
fairly similar conclusions. Table 9 shows the correlation of productivity estimation of each methodol-
ogy. Intuitively, methodologies with similar assumptions are more correlated, like Fare Primont,DEA
and SFA, or Cobb-Douglas and Translog functions. SFA appears as the bridge between both types of
methodologies due to its structure and has relatively high correlation with most of the other method-
ologies.
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Table 9. Correlation in TFP estimations
Method (1) (2) (3) (4) (5) (6) (7)
(1) Färe Primont 1.00
(2) DEA 0.77 1.00
(3) Cobb - Douglas (Fixed effects) 0.34 0.37 1.00
(4) OLS correction (Cobb - Douglas) 0.21 0.32 0.18 1.00
(5) SFA (Cobb - Douglas) 0.54 0.43 0.63 0.15 1.00
(6) Translog (Fixed effects) 0.34 0.37 1.00 0.18 0.62 1.00
(7) Cost based shares elasticity 0.21 0.27 0.92 0.14 0.49 0.92 1.00

Ultimately, different outcomes come from different assumptions. We cannot immediately say that
DEA estimations are flawed if there is prove of constant returns to scale in functional forms and they
where estimated with VRS. The same can be argued with technical efficiency, as functional forms
show low levels technical inefficiency(negative productivity). Methodologies, ratter than competing
forces, are different lens that allow the researcher to understand production results under different
perspectives. The results showed how very different methodologies allowed to clarify results from each
other and how cross analysis where extremely useful to understand agricultural production.

Due to the discussion in the results section, we argue that Cobb-Douglas TFP results are the most
appropriate indicator of productivity in the dataset. Both data and context are key to define which of
this tools is the most useful, but a deep analysis requires to understand the phenomena form different
lens. While in this case Cobb-Douglas and SFA estimations showed the most robust results, other
methodologies, or combinations of methodologies, can become more appropriate in different context.

In conclusion, cross sectional methodologies for estimating productivity are complementary tools
that, when properly applied, can give very useful insight as a group. While assumptions and data
context determines which methodology can have more robust results, multiple estimations are highly
recommended and desirable to have a more holistic analysis of production performance.
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